
Mining Cross-Task Artifact Dependencies from
Developer Interactions

Usman Ashraf, Christoph Mayr-Dorn, and Alexander Egyed
Institute for Software Systems Engineering

Johannes Kepler University
Linz, Austria

{usman.ashraf,christoph.mayr-dorn,alexander.egyed}@jku.at

Abstract—Implementing a change is a challenging task in com-
plex, safety-critical, or long-living software systems. Developers
need to identify which artifacts are affected to correctly and
completely implement a change. Changes often require editing
artifacts across the software system to the extent that several
developers need to be involved. Crucially, a developer needs to
know which artifacts under someone else’s control have impact
on her work task and, in turn, how her changes cascade to other
artifacts, again, under someone else’s control. These cross-task
dependencies are especially important as they are a common
cause of incomplete and incorrect change propagation and
require explicit coordination. Along these lines the core research
question in this paper is: how can we automatically detect cross-
task dependencies and use them to assist the developer? We
introduce an approach for mining such dependencies from past
developer interactions with engineering artifacts as the basis for
live recommending artifacts during change implementation. We
show that our approach lists 67% of the correctly recommended
artifacts within the top-10 results with real interaction data and
tasks from the Mylyn project. The results demonstrate we are
able to successfully find not only cross-task dependencies but also
provide them to developers in a useful manner.

Index Terms—cross-task dependencies, change impact assess-
ment, developer interactions, software artifacts recommendation,
Mylyn, Bugzilla.

I. INTRODUCTION

Implementing a change such as fixing a bug, introducing
a new feature, or removing outdated functionality is a chal-
lenging task. Correctly and completely implement a change
requires the developers to identify all relevant artifacts. In non-
trivial systems, a change often requires editing artifacts that are
maintained by different developers or different teams. Aside
from small, localized bug-fixes changes are rarely described
and managed by a single task but rather a set of tasks worked
on by different developers.

Crucially, a developer needs to know which artifacts under
someone else’s control have impact on her underlying work
task: changes to such artifacts then may induce additional
changes, might restrict how to implement a change, and when
to do so. In turn, a developer’s artifact changes cascade to other
artifacts under someone else’s control. We characterize the
situation when changes to artifacts in one task influence (po-
tential) changes to other artifacts in another task as a cross-task

This work was supported in part by the Austrian Science Fund (FWF):
P29415-NBL funded by the Government of Upper Austria; and the FFG,
Contract No. 854184.

dependency. Simple, illustrative examples include fixing a bug
in business logic and updating integration tests accordingly,
introducing a new field in the database and displaying it on the
user interface, or introducing a feature toggle and adding the
toggle trigger to the configuration database. From the authors’
experience, in many organizations often different teams are
responsible for these tasks due to prescribed development
processes, required expertise, or organizational structure.

Awareness of cross-task dependencies is especially impor-
tant as lack thereof is a common cause of incomplete and
incorrect change propagation. Developers thus need support
in becoming aware of these dependencies, respectively the in-
volved artifacts for simpler coordination of change propagation
(i.e., forward and backward impact assessment [6]). Manually
maintaining these dependencies is tedious.

Along these lines the core research question in this paper
is: how can we automatically detect cross-task dependencies
and use them to assist the developer?

We introduce an approach for mining cross-task dependen-
cies from developer interactions with engineering artifacts as
captured in the IDE. Interactions describe which artifacts a
developer has accessed and edited within the scope of a task.
From task pairs, we extract re-occurring artifact sequences: the
cross-task dependencies. We further observe the accessed arti-
facts during live editing in the IDE and apply the dependencies
to recommend which other artifacts are potentially affected by
the ongoing work.

This paper provides the following two contributions: First,
we developed a technique for extracting cross task dependen-
cies from interaction data. To the best of our knowledge, this is
the first attempt to obtain artifact dependencies across tasks.
Contemporary approaches derive dependencies from within-
task data or data from aggregated tasks of very close temporal
proximity. Second, we provide a recommender prototype that
applies developer interactions in order to suggest a ranked list
of affected artifacts.

We obtained real developer interaction data and tasks from
the Mylyn project and mined cross-task artifact dependencies
in a sliding window over the duration of several years. Our
approach lists 50% of correctly recommended artifacts within
the top-5 results. The results demonstrate we are able to
successfully find not only cross-task dependencies but also
provide them to developers in a useful manner.

978-1-7281-0591-8/19/$31.00 c© 2019 IEEE SANER 2019, Hangzhou, China
Research Papers

186



The paper is structured as follows. Section II provides a
detailed motivating scenario to further outline the importance
of this research followed by section III that outlines the
technical details of our approach. Section IV then lists the
specific research questions this paper investigates. Section V
reports the study design with results available in Section VI
and Section VII. We discuss the findings in Section VIII.
Section IX compares our approach to state of the art before
Section X completes the paper with conclusions and an
outlook on future work.

II. MOTIVATING SCENARIO

We motivate our research based on a real example from the
open source Mylyn project. Mylyn [15] allows a developer
to connect to a task management tool (such as Bugzilla) for
selecting tasks to work on and captures all developer read
and write events within the Eclipse IDE. DevMM is assigned
to new task 1522111 - Allow local tasks to be promoted to
repository tasks, a feature in Mylyn’s Bugzilla sub component.
DevMM obtains further details such as Provide facility to copy
task from local repository to remote one from the task de-
scription. Furthermore, he also examines comments from other
developers on the same task which suggests their familiarity
with the task. From the interaction history attached to the task
we learn that DevMM browses through different artifacts; a
usual activity to locate relevant source code artifacts.

Ideally, an impact analysis tool supports DevMM during
this activity by suggesting potentially affected artifacts based
on, for example, his browsing activities. In a developer’s ex-
perience, implementing a change often has impact on artifacts
maintained by other developers. A developer will then assess
to what extent his intended (or already implemented) changes
will affect someone else’s code (forward impact assessment).
That typically implies inspecting the potentially affected ar-
tifacts, and hence requires being aware of them in the first
place. Similar, other developers’ artifacts (and their recent
changes) may influence how a change can be implemented
(backward impact assessment). Again, this involves being
aware of such artifacts and inspecting them for relevance.
Support is particularity important when these artifacts reside
far away from the developers current work context, e.g., in a
different (java) project or subcomponent.

In this particular example, our approach could
support DevMM by recommending to inspect
...trac.core/.../internal/trac/core/TracTaskDataHandler.java.2

While task 152211 belongs to the Bugzilla subcomponent,
this artifact belongs to the Trac subcomponent; a
subcomponent primarily maintained by DevSP.3 DevMM
would investigate, for example, whether the change for
the Bugzilla subcomponent can be replicated in the Trac
subcomponent.

Our approach is able to provide such a recommendation
as it analyses past developer interactions and

1https://bugs.eclipse.org/bugs/show bug.cgi?id=152211
2We abbreviated all artifact names in this section for sake of readability.
3Bugzilla and Trac are two different bug tracking tools.

extracts which artifact dependencies exist across task
boundaries. In this case, as soon as DevMM accesses
...tasks.ui/.../tasks/ui/editors/AbstractRepositoryTaskEditor.java
in the IDE we observe this event and search for
matching cross-task dependencies. In the months prior
to DevMMs ongoing development efforts on task
152211, the Mylyn project exhibited six task pairs where
...trac.core/.../internal/trac/core/TracTaskDataHandler.java
was accessed in one task and
...tasks.ui/.../tasks/ui/editors/AbstractRepositoryTaskEditor.java
in another one. Listing 1 provides the corresponding cross-task
artifact dependency excerpt as represented in JSON.

{
"id": "7ec6f597a31b6623e0207eebba23f199",
"miningStart" : "2007-07-06",
"miningEnd" : "2008-01-02",
"sourceArtifacts": [
"org.eclipse.mylyn.tasks.ui/src/org/eclipse/

mylyn/tasks/ui/editors/
AbstractRepositoryTaskEditor.java"

],
"destinationArtifacts": [
"org.eclipse.mylyn.trac.core/src/org/eclipse/

mylyn/internal/trac/core/TracTaskDataHandler
.java"

],
"TaskPairs": [
[ "Id-196643", "Id-196622" ],
[ "Id-196643", "Id-196585" ],
[ "Id-196700", "Id-196622" ],
[ "Id-196700", "Id-196585" ],
[ "Id-196700", "Id-196643" ],
[ "Id-196643", "Id-196700" ]

]
}

Listing 1: JSON representation of a cross-task artifact
dependency

III. MINING AND APPLYING CROSS-TASK ARTIFACT
DEPENDENCIES

Our approach to mining and applying cross-task artifact
dependencies consists of three phases as depicted in Figure 1:
(i) software development data gathering (1), (ii) dependency
mining (2,3), and (iii) artifact recommendation (4,5,6,7). Ar-
tifact recommendation is one of many potential uses of cross-
task artifact dependencies selected for demonstration purposes.

A. Software Development Observation

The basic data set from which we extract cross-task depen-
dencies are developer interactions with engineering artifacts
such as requirements, models, source code, documentation,
test reports etc. (see Figure 1 (1)). In this paper, we focus on
source code artifacts.4 A developer interaction describes how
the developer interacted with the IDE such as opening, editing,
closing artifacts, navigating the artifact structure, or executing
commands. Various preexisting approaches such as Mylyn

4As the developer interactions from the evaluation system under study
contain almost exclusively references to source code we cannot demonstrate
that the approach would be successful in discovering cross-task dependencies
among other artifact types.

187



Fig. 1: Approach.

capture such interactions. The key requirements for interaction
data to be useful for our approach is providing following
properties per interaction: who conducted the interaction (i.e.,
which developer), when did the interaction occur (we don’t
need duration), what artifact (fragment) was accessed (read
or write), and in the scope of which task (what bug report,
issue, or story) did the interaction happen. Additionally, we
require task details on assigned developers, task description,
etc. As with interaction events, we store this information as
task update events in the Unified Event Stream. We explain
their use for measuring similarity among tasks in the following
subsection.

We store all interaction events in the Unified Event Stream,
thereby abstracting away which tool provided the interaction
data. Ultimately, the Unified Event Stream contains the inter-
action events of all engineers working on the various task over
the complete life-cycle of a software system.

B. Cross-task Artifact Dependency Mining

For dependency extraction, we decide on a time window
(e.g., 6 months) and select tasks having being worked on
actively during that interval (Figure 1 (2)). The window size
depends on work intensity and the typical task durations. An
overly wide window increases the risks of detecting primarily
noise, i.e., false positive dependencies, while a too narrow
window risks missing dependencies as it fails to include related
tasks. We define a task as being actively worked on when a
minimum number of interaction events have occurred (e.g.,
10). Again, such a threshold depends on the typical number of
artifacts accessed within the scope of a task. A high threshold
implies that only tasks with a lot of events respectively in-
volved artifacts will be considered for mining (thus potentially
missing dependencies), while a too low threshold selects also
task with little progress that are likely not part of a dependency
(yet) but increase the mining effort.

In short, the preliminary input to the extraction algorithm
consists of the active tasks, and for each task the set of artifacts
that were accessed (read or write) within the time window
according to the interaction events. Interaction events for an

active task that occurred outside that time window are not
considered.

The next challenge is generating meaningful task pairs
from all active tasks in the observed time-window. Taking
all possible permutations of tasks (i.e., the cartesian product)
is not an option for two reasons: first, the number of pairs
grows exponentially with the number of tasks and would
require extensive computing resources for running the mining
algorithm. Second, with all permutations the likelihood for
finding noise increases. Our approach aims to identify task
pairs that are more likely to exhibit cross-task dependencies.

Figure 2 depicts our task pair generation approach. Assume
that out of tasks A to Z, querying the Unified Event Steam for
active tasks in a given time-window t returns the tasks A, C, F,
and X (1). We then calculate pair-wise similarity among tasks
using properties such as common commenting developers or
textual similarity in task description and comments (2). We
use cosine similarity on the two sets of developers having
commented on the respective tasks, which yields a similarity
value of 0 for completely different commenting developers,
and 1 for two tasks with the same set of commenting de-
velopers. With respect to textual similarity, we extract terms,
apply stemming, and apply cosine similarity on the resulting
term vectors. Overall similarity is simply a linear combination
of these two metrics, giving each equal weight.

The rationale behind using developer and textual similarity
as an indicator for cross-task dependencies is that the tasks
are likely to share a common vocabulary (e.g., a database
field update with impact on the user interface, very likely has
the respective user interface artifacts use similar terms) and
that relevant developers—even when not explicitly assigned to
the task—share their expertise in comments. We deliberately
ignore temporal distance among tasks as a similarity metric as,
on the one hand, there are often large temporal gaps between
related tasks, and on the other hand, developers try to work
on unrelated tasks concurrently or in close temporal proximity
as these require no or very little coordination.

From the resulting similarity matrix, we chose for each task
the top-k most similar tasks (3) and collect them in a list. From
each list, we generate the set of pairs (4). We then filter out

188



Fig. 2: Generation of TaskPairs.

all artifacts that occur insufficiently often (i.e., < k ∗ 2 + 1)
to become part of a pattern. Filtering artifacts may lead to
an empty set, we then remove the respective sequence from
the set. We abort mining once the number of sequences falls
below the support threshold s. We introduce s to obtain some
initial confidence in a cross-task dependency. We store only
those dependencies which the mining algorithm detects among
at least s distinct task pairs. The lower s the more patterns we
are likely to find, but also the more likely these represent noise.
The higher s the fewer patterns we can expect to find.

The actual problem of mining cross-task dependencies can
be mapped to a simplified sequential pattern mining problem
for which several algorithms exist [9]. Sequential pattern
mining (SPM) takes a set of sequences, each sequence in turn
consisting of item sets. SPM then searches for reoccurring
patterns where one or more items in one item set are followed
by items in a subsequent item set (within the same sequence).
We use an algorithm by Fournier-Viger et al. [10] from the
SPMF library.5

In our heuristic a sequence consists of a source tasks and
a destination task (i.e., a task pair). The artifacts accessed
within these tasks make up the respective item sets. We are
interested which changes in one task (i.e., the source task) tend
to be followed by (other) artifact writes and reads in another
task (i.e., the destination task). Specifically, we include only
write events in the source task, and include write and read
events in the destination task. We do this to capture situations
where a developer inspects the changed artifact to assess its
relevance, respectively, where a change in one task results
in artifacts automatically being (re)generated (e.g., model-to-
code transformations) that are not changed again but rather
read only.

Note that the temporal order of interaction events as well
as the temporal order of tasks is irrelevant for dependency
extraction as we assume cross-task dependencies to be time-
insensitive. For example, it does not matter whether first one
task updates a test, and then another task updates the corre-
sponding functionality, or whether it is the other way around,
or whether this happens simultaneously, the dependency exists

5http://www.philippe-fournier-viger.com/spmf

nevertheless. We, thus, place every task pair twice into the
set of sequences—once in temporal order, once in inverse
temporal order—to detect dependencies independent of time.
This has no negative effect on detecting dependencies that
happen to be time-sensitive.

In our approach, we run the mining algorithm (5) at most
n times (once of each active task), which a maximum of
k ∗ (k − 1) sequences per mining run—the mining effort
thus grows linearly in n. In contrast, without generating
task pairs, we would run the mining algorithm once but
with n ∗ (n − 1) sequences. Listing 1 provides an example
cross-task artifact dependency output. A dependency consists
of the source artifact set, destination artifact set, the set
of task pairs among which the mining algorithm detected
the pattern, and the time-window. Specifically in Listing 1,
editing AbstractRepositoryTaskEditor.java,
coincided with accessing of the destination artifact
TracTaskDataHandler.java among six task pairs.

After running the mining algorithm (6), we de-duplicate
the found dependencies: for an identical pair of source and
destination artifacts we simply merge the two task pair sets.
Ultimately, we store the cross-task artifact dependencies for
later use (7).

C. Artifact Recommendation

We expect cross-task artifact dependencies to be useful for
multiple use cases. One such use case is supporting developers
live during development by informing them about artifacts to
inspect for impact on their underlying work (backward impact
assessment) as well as what artifacts to inspect for impact of
their work (forward impact assessment). Our recommendation
prototype listens to artifact read and write events during a
developer’s work in the IDE (i.e., the same type of events as
stored in the Unified Event Stream, Figure 1 (4)).

For every few events, the recommender checks if it has
used the accessed artifact as a trigger for a recommendation
before. If this is not the case, it queries the cross-task artifact
dependency database for any dependency that lists the artifact
among the source artifacts (5). From all matching dependen-
cies, the recommender then retrieves all artifacts from the
destination set, filtering out those that have been recommended

189



once before. We recommend each artifact at most once to
avoid annoying the developer. The recommender then ranks
the remaining artifact candidates along the following criteria
to rank the most relevant ones first.

We apply the following criteria (6):
Occurrence counts across all matched dependencies in how

many tasks the candidate artifact was accessed. We as-
sume a higher count implies more relevance.

Distance measures the package hops from the triggering
artifact to the candidate. Similar to [7], we count
how many packages up the hierarchy and down
again does a developer has to navigate to reach
one artifact from the other. For example, the
artifact org/eclipse/tasks/Class1.java
is three hops away from
org/eclipse/internal/sandbox/Class2.java
as we need to traverse tasks up and
internal/sandbox down to reach Class2.java
from Class1.java. We assume a more distant
candidate artifact to be more relevant than a closer one
as a developer may be less aware of the change impact
than on an artifact that is close to his/her current work
context.

Access Frequency counts the number of tasks (in the time-
window used for mining dependencies) in which any
developer accessed the candidate artifact. In contrast to
Occurrence, this metric evaluates the popularity of an
artifact. We assume, a frequently changed artifact has
more impact than an infrequently changed one.

Personal Access Count determines in how many tasks the
currently active developer (the one about to receive
a recommendation) has accessed the artifact candidate
before.

We normalize each score to the range [0, 1] for comparabil-
ity and multiplying each score by its respective weight, where
wi ∈ [0, 1] and

∑
i wi = 1. The sum of weighted scores pro-

duces the overall score used for ranking all artifact candidates.
The recommender returns the ranked list of artifacts (i.e., a
recommendation instance, Figure 1(7)) and internally stores
for each recommended artifact the ranking metric results and
applied ranking weights. This enables dynamically adapting
the weights upon observing what artifact the developer even-
tually accesses. Such analysis and self-tuning, however, is out
of scope of this paper.

IV. RESEARCH QUESTIONS

In our paper, we split the research questions (RQ) into
two coarse grained groups: (1) what are the characteristics
of detected cross-task dependencies? and (2) are the detected
cross-task dependencies indeed useful?

RQ1a: Do we find cross-task dependencies with our pro-
posed heuristic? Answering this question informs us whether
we are able to detect reoccurring development situations where
accessing an artifact in one task (i.e., the source artifacts) tends
to coincide with accesses to an artifact in another task (i.e.,
the destination artifacts). At this stage, however, we remain

unsure whether the found relations are true dependencies or
just noise.

RQ1b: How much are the source and destination artifacts
overlapping. Put inversely: to what extent are artifacts in the
source set disjunct from artifacts in the destination set?
A large overlap would imply that the same artifact are changed
together in multiple tasks and hence that contemporary ap-
proaches based on logical coupling, for example, would be
equally able to find these dependencies.

RQ1c: What is the ratio of unique artifacts in the depen-
dencies compared to all unique artifacts?
A high ratio might indicate that our heuristic finds a lot of
noise as we wouldn’t expect the majority of artifacts to be
part of a cross-task dependency. A high ratio points to poor
cohesion and tight coupling of artifacts (and teams!) across
the system.

RQ1d: Are the task pairs—among which we find task
dependencies—linked in the issue tracking system?
If so, then our heuristic could focus on analysing linked task
pairs only. Previous work has shown that linked task pairs not
necessarily exhibit access of the same artifacts [20]. It didn’t
investigate, however, the presence of cross-task dependencies.

RQ2a: Are we able to predict based on cross-task dependen-
cies whether developers need to become aware of a particular
artifact given their current work task context?
If so, the task dependencies can be applied in a recommender
to inform a developer about artifacts that might have been
changed in another task context before, respectively what
artifacts might have to be changed by another developer,
thereby assisting forward and backward change propagation.
If we can’t predict artifacts then the possibility exists that our
heuristic detects mere noise in the interaction data.

RQ2b: Are we able to predict artifacts in a meaningful
manner?
If we are able to predict artifacts but these are buried among a
large number of false positives then the developer is burdened
with evaluating the correctness of the recommendation and—
over time—will likely ignore the recommendations. Thus we
achieve little benefit.

V. STUDY DESIGN

A. Data Gathering

We use developer interactions captured via the Eclipse IDE
Mylyn Plugin6 during the development of the Mylyn project
[15]. Mylyn tracks the development context of an interaction
which provides us with details on who was working on which
bug report, the type of interaction (e.g., selection, write, nav-
igation) and the timestamp of the interaction. We have public
access to these interaction events in the form of attachments
to bug reports on the Eclipse Bugzilla website.7 We interpret
a bug report as a task in our approach. We retrieved all bug
reports including their change history, comments, and interac-
tion attachments from the Mylyn project that listed at least one

6http://www.eclipse.org/mylyn/
7https://www.bugzilla.eclipse.org/bugs/query.cgi

190



Mylyn interaction attachment via Bugzilla’s JSONRPC API.8

For each interaction attachment, we extracted all read events
(i.e., selection) and write events (i.e., edit) at the file level and
stored them in the Unified Event Stream (ignoring all other
events as they don’t impact this work). We additionally added
events for each task change and each comment as needed for
task similarity calculation. In total, we processed 4,477 tasks
with interaction attachments, resulting in over 417,000 events
that cover the interval from 15th November 2005 to 4th April
2017. We observed the majority of interaction events in the
interval between 2006 and 2013.

B. Dependency Mining

We applied a sliding window approach for mining depen-
dencies and then evaluating their usefulness.

Within a training window, we selected all tasks with at
least 10 artifact access events in the Unified Event Stream
as the training tasks. This selects only those tasks that
have their main work effort fall into the training window. We
generated task pairs with k = 4 as outlined in Section 1 and
executed the mining algorithm with a support threshold of
s = 5, a trade-off between computation time and likelihood
to detect a dependency.

Inspecting the Mylyn data set, we noticed that related tasks
(i.e., tasks that likely exhibit cross-task dependencies) often
have significant temporal gaps due to the nature of open source
development. We therefore determined a 180 day training
window to be large enough to include related tasks and small
enough to detect dependency changes across time.

C. Dependency Evaluation

We take the time (i.e., evaluation) window immediately
following the training window for evaluating the detected
dependencies. We chose a 30 day evaluation window size as
this selects tasks that are not too far away from the mining
window and long enough to select the majority of work going
on in the task. Within the evaluation window, we selected all
tasks with at least 10 artifact access events in the unified event
stream as the evaluation tasks. This selects tasks for
evaluation only during intervals of their main work effort; not
at the task’s beginning when there are too few events to use
as input for recommendation, nor towards the task’s end when
recommendations wont be useful.

We simulated developer work on a particular task by replay-
ing all interaction events for that task within the evaluation
window in temporal order. For every five events—the first
five are the seed—we trigger the recommender with replayed
events and obtain its artifact recommendations (see Figure 3
(1)). Hence, we obtain for each task a set of recommendation
instances, each containing a list of one or more ranked artifacts
(4).

For each recommended artifact, we mark it as a true pos-
itive when the interaction event sequence yet-to-be-replayed

8https://www.bugzilla.org/docs/4.4/en/html/api/Bugzilla/WebService/
Server/JSONRPC.html

contains an event accessing that particular artifact.9 We mark
the artifact recommendation as a false positive when no such
event occurred. Given that we recommend multiple times, we
further record its recommendation-specific rank (i.e., its posi-
tion within the current set of artifact recommendations), and its
task-specific rank (i.e., its position among all recommendations
for a task).

At the end of each task replay, we mark all artifacts as false
positives which appeared in the Unified Event Stream in any
prior training interval and that were not part of the seed (7).
We excluded any new artifacts from the false negative set as
we cannot predict an artifact we haven’t encountered before.

After mining dependencies from the 180 day window, and
evaluating them in the subsequent 30 day evaluation window,
we would then shift the training and evaluation window by 30
days and repeat the procedure. Given the lack of active tasks
(i.e., insufficient developer interactions per task) during the
first few months, we set the first training window to 12th May
2006 to 8th November 2006. Similar, we set the end of the last
training window to 6th May 2013 for a total of 80 training,
respectively evaluation, iterations. Events after March 2013
were either too few to consider a task as active, or consisted
merely of task updates and comments.

The following section reports results from the quantitative
analysis.

VI. DEPENDENCY MINING QUANTITATIVE ANALYSIS

This section reports on the quantitative analysis results
required for answering research questions RQ1a-d.

Figure 4 displays dependency statistics for 60 training
window iterations starting May 2006 to Nov 2011. We select
between 2 and 6 tasks for mining until May 2013. These are,
however, too few for our mining algorithms to find patterns
and hence we don’t display iterations 61 to 80. Our Supporting
Online Material10 includes the data set with all iterations,
though.

Answering RQ1a: Do we find cross-task dependencies with
our proposed heuristic?
Figure 4 (top) reports how many unique artifacts developers
accessed in events across all tasks within each iteration (O),
respectively how many unique artifacts exist in the code base
from the first iteration until the end of the ith iteration (M).

Figure 4 (middle) visualizes the number of training tasks,
the amount of unique dependencies found the number of
unique artifacts across all source sets, respectively destination
sets; again based on events from a single iteration.

Our approach detects the first dependencies in iteration 3,
the last ones in iteration 50, with a total of 1,813 dependencies.
In iteration 13 we find the most dependencies: 235 dependen-
cies, respectively 372 normalized dependencies, made up of 72
unique artifacts among the source artifacts, respectively 124
unique artifacts among the destination artifacts.

Overall, these results show that our mining heuristic finds
a significant number of cross-task artifact dependencies. The

9Recall that we don’t recommend already accessed artifacts.
10https://figshare.com/s/cf9b7c8b6a46f52b3ad0

191



Fig. 3: Recommendation evaluation procedure based on replaying developer interactions, resulting in two recommendation
instances.

bulk of these dependencies occur during the initial growth
phase of the project. We note a sudden spike in unique artifacts
in iteration 17 which sees a sudden increase of almost 5,000
new artifacts. This spike interrupts the gradual slowdown
of newly introduced artifacts which we observe before and
after that iteration. We assume that this is the result of a
major restructuring of the code base and/or integration of sub
components previously not covered in the interaction traces.
Our approach would require artifact, respectively source code
commit, inspection capabilities to detect artifact renaming,
respectively, artifact relocation to another package. At the mo-
ment, our approach treats the artifact before and after renaming
as two distinct artifacts. Consequently, our mining heuristic
is less likely to find dependencies involving the renamed
artifacts, and existing dependencies are no longer relevant
during recommendation and result in false positives. This is
one explanation why the number of detected dependencies is
low after iteration 17 (see Figure 4 middle) even though the
number of unique artifacts accessed per iteration remains high
(see Figure 4 top).

Up to iteration 8 and beyond iteration 25, a lack of accessed
artifacts explains the low number of detected dependencies.

Answering RQ1b: How much are the source and destination
artifacts overlapping. [. . . ]
Figure 4 (bottom, red x) reports the median Jaccard similarity
coefficient (i.e., set intersection over union), measuring the
overlap of artifacts in the source set and destination set
for detected dependencies. A Jaccard coefficient close to 1
describes sets with almost identical members, while a value
close to 0 describes two sets that share virtually no members.

The median Jaccard coefficient rarely rises above zero.
Only at later intervals where we hardly find dependencies
(compare with Figure 4 middle - Dependencies Detected) do
we experience non-negligible overlap. This implies that for
at least half of all dependencies there is no overlap between
source and destination artifacts. This is a strong indicator
that we are able to find dependencies that cannot be detected
with logical coupling techniques. Logical coupling requires
the coupled artifacts to repeatedly appear together in the
same commit. If cross-task dependencies were just logically
coupled artifacts, then we would find similar source and

destination sets (i.e., the same artifacts appearing in source
and destination) consequently yielding high Jaccard similarity.
Figure 4 (bottom, red x) shows that this is not the case.

Answering RQ1c: What is the ratio of unique artifacts in
the dependencies compared to all unique artifacts?
Figure 4 (bottom, green � and blue ♦) depicts the ratio of
artifacts in the source set, respectively destination set, with
respect to all accessed artifacts in that iteration.

There we observe how only for a single iteration in the
beginning of the project the source artifacts consist of ∼13%
of all accessed artifacts. This number quickly drops to sin-
gle digits, and eventually fluctuates around 1%. Destination
artifacts show an even earlier drop and remain similarly low.
These numbers indicate that only a handful of artifacts make
up a cross-task artifact dependency, and hence explain why
recall is not a suitable metric for evaluating the benefit of our
approach.

Answering RQ1d: Are the task pairs—among which we find
task dependencies—linked in the issue tracking system?
Explicit links between task pairs of a dependency (e.g.,
Bugzilla’s blocks and depends on relations) occurred extremely
rarely (hence not shown). In total, we found only in 13 out of
1,813 dependencies where at least one task pair exhibited an
explicit link. We encountered these dependencies in iterations
10, 11, 12, 13, 17, and 30.

Observing an explicit link among task pairs in less than
1% of all dependencies is a strong signal that explicit links
cannot be used as a filter/predictor among which task pairs we
are likely to find a cross-task artifact dependency.

VII. RECOMMENDATION QUANTITATIVE ANALYSIS

Figure 5 (top) displays for each iteration the number of tasks
that received no recommendation (�), no correct recommen-
dation (x), and tasks with at least one correct recommendation
(•). Evaluation iteration i identifies the 30-day window follow-
ing the ith training iteration.

Over the 50 iterations, we replayed a total of 2,086 evalua-
tion tasks. We stop at iteration 50, the last iteration where we
detected dependencies.

Answering RQ2a: Are we able to predict based on cross-
task dependencies whether developers need to become aware

192



Fig. 4: Dependency Statistics

of a particular artifact given their current work task context?
We provide recommendations (i.e., recommend at least one
artifact) for 798 out of the 2,086 evaluation tasks, a task
coverage rate of 38%. Out of these, 229 contain one or more
correct recommendations. On the task level, we thus achieve
a precision rate of 29%.

A task coverage rate of 38% and task precision rate of 29%
is expectedly low as a well-designed software system enables
the majority of tasks to be worked on independently, i.e.,
without affecting other tasks and hence involving no artifacts
which are part of a cross-task dependency. This fact is also
apparent in low recall values (see Figure Figure 5 bottom, ◦).

Low coverage and recall is not an issue as our goal is
NOT to recommend every artifact a developer should access
but rather aim to focus recommendations to those that have
potential cross-task impact and thus might need dedicated
coordination.

Answering RQ2b: Are we able to predict artifacts in a
meaningful manner?
We compute the mean reciprocal rank (MMR) using task-
specific rank (TSR) across tasks for every interval and report
in Figure5 (bottom): once for all tasks with a recommendation
(+) and once only for tasks with at least one correct recom-
mendation (×). The overall MMR for tasks with at least one
correct artifact recommendation is 0.60; and 0.18 across all
tasks.

Out of the 229 tasks, we are able to provide in 214 instances
at least one recommendation instance that has a correct artifact
within the top 10 results (i.e., 93%). Overall, the median
recommendation instance-specific rank (RISR) of a correct
artifact recommendation (i.e., independent of tasks) is 5, with
67% of artifacts having an RISR <= 10. This implies that
in 67% of recommendation instances, whenever there is at
least one correctly recommended artifact, the developer will
find it within the top 10 results. Hence, a developer needs not
look far down the list of artifact recommendations to obtain
at least one useful recommendation. This is in range of the
typical search distance when browsing search engine results
on the web.

VIII. RESULT DISCUSSION

In this section, we discuss the implications and limitations
of our approach and its evaluation.

A. Implications

Overall, the results paint a promising picture that developer
interaction events are suitable for detecting cross-task artifact
dependencies. We refrain from the claim, however, that such
events should be the only input to dependency detection. The
quantitative evaluation of recommendations highlighted that
additional efforts need to be put into determining when a cross-
task dependency is relevant as the precision rates leave room

193



Fig. 5: Tasks with correct/without correct/without any recommendations (top); Recommendation Recall and MRR (bottom).

for improvement. Determining dependencies based on artifact
access events below file level might allow for more accurate
dependencies and recommendations.

While live recommendations to developers are one way to
make use of the detected dependencies, potential alternative
uses include providing insights during explicit impact assess-
ment activities, code reviews, task scheduling, or software sys-
tem architecture inspection. Our results motivate the evaluation
of these application scenarios as part of future work.

B. Limitations

We evaluated out approach with artifacts at the file level
as we hypothesize that cross-task dependencies among Java
classes are likely to exist at the file level rather than at the
method level or below. While our approach is generic enough
to work on any artifact granularity level, extra effort and
evaluation is needed to confirm dependencies detection among,
for example, model elements in UML and source code, or
among source code and documentation.

Another limitation is support in the presence of newly
created artifacts. We can only provide recommendations for
artifacts that developers accessed in previous tasks that where
subsequently mined and hence might not be aware of the most
recent cross task dependencies. In this respect our approach
has the same limitations with regard to new artifacts as logical
coupling techniques. We argue, however, that we generate
recommendations as soon as the developer accesses an existing
artifact (e.g., to check how something was implemented so
far). Additionally, we don’t expect an immediate impact when
only new artifacts are introduced.

C. Threats to validity

Internal Validity We address researcher bias by analysing
data from an open source system rather than conducting
controlled experiments. The analysis focused on artifacts and
tasks and was not specifically tailored to Java development in
general or the Mylyn project in particular. With respect to the

data set quality, we noticed that not all tasks in the Bugzilla
issue tracking system provided an interaction attachment. As
Mylyn interaction attachment upload is neither automated nor
mandatory, we were limited to a subset of all tasks. Hence,
we very likely were unable to detect several dependencies,
respectively couldn’t evaluate them on tasks that might have
benefitted from them. Overall, the Mylyn dataset is rich
enough for a sufficiently long, continuous interval to allow
successful mining and recommendation.

External Validity We analysed only a single data set as we
are not aware of other real world projects aside from Mylyn
that make a significant amount of task-centric interaction
events available. Mylyn interaction data upload capabilities are
not available by default and thus not widely used beyond the
Mylyn project. Hence, we are careful to generalize our findings
beyond the scope of the Mylyn project. Our analysis, however,
demonstrated that it is indeed possible to detect cross-task
dependencies from interactions and motivates further research
in this direction. As outlined in future work (Section X),
alternative data sources such as commit information might
possibly allow for cross-task mining. Commit data, however,
lacks (i) read-only events which reduces the detection rate
and (ii) temporal information which precludes interaction
replaying for evaluation purposes.

Construct Validity The replay approach is a proxy of useful-
ness as we consider only those recommendations as successful
where the developer eventually accessed the recommended
artifact. We might have recommended artifacts that are indeed
relevant but the developer at that time wasn’t aware of these
artifacts, hence didn’t access them, and we therefore regarded
them as false positives. We, therefore, cannot assume that all
false positives were indeed inaccurate. We thus can primarily
claim that our recommender is helpful for remembering which
artifacts to assess, which in non-trivial systems is important
nevertheless. We refrained from interviewing developers from
the Mylyn project as the time frame with sufficient interaction
data to detect dependencies and evaluate them is almost

194



10 years ago. We would not expect feedback to provide
meaningful insights after such a long time.

IX. RELATED WORK

Investigations into change impact among code artifacts
studied the logical coupling between artifacts, i.e., which
artifacts tend to co-evolve [27], [29], [30]. These approaches
observe which artifacts frequently occur in the same commit
(or in temporal proximity) independent of the task that the
changed happened in.

Few approaches analyse control and data flow among code
artifacts [25], mine association rules from software revision
histories [17], [23] , or utilize a variability model to detect the
impact within product families [1].

Several researchers consider developers’ interaction histo-
ries to augment traces among logically coupled source code
artifacts [2], [3], [16]. Kostadin et al. [5] use low-level IDE
interaction to detect hidden behavior of developers. Bantelay
et al. [2] combine interaction histories and commit data to im-
prove the detection of evolutionary coupling between artifacts.
Sebastian et al. [22] use developer activities in the IDE with
context information, such as source-code snapshots for change
events to study developer behavior. These approaches aim to
find traces among code artifacts without considering contex-
tual information such as the task the developer is working
on. However, Wiese et al. [28] apply contextual information
collected from tasks, developers’ communication, and commit
data to capture the change patterns of artifacts. They use this
contextual information to improve the artifacts co-change pre-
diction. We focus specifically on cross-task dependencies for
identifying dependencies with dedicated coordination needs.

Several task-centric approaches consider fine-grained devel-
oper interactions but restricts analysis to interactions within a
task without considering the relations to other tasks. Kersten
and Murphy [15] introduce the Mylyn tool for determining
which code artifacts are relevant for a particular development
task. Their analysis, however, is limited to a single developer
within a single task.

Hipikat [4] supports the developer in retrieving relevant arti-
facts from the project’s overall history. It considers documents,
tasks, commits, messages, and artifact changes but not the
detailed engineering interaction history. A tool that capture
the interaction occurred in a particular file is HeatMap [24].
Another tool, Wolf [8] extracts artifact ownership and changes
from source code repositories and generates traces between
artifacts and engineers. The tool provides an organizational
view for managers and an individual view for developers to
support impact analysis activities. However, such tools focus
on the relation between artifacts and tasks but not necessarily
on the dependencies of artifact across tasks.

Multiple authors investigate inter-task relationships. Thomp-
son et al. [26] study how software developers use relationship
between tasks based on their titles to breakdown project work.
Their study indicates that finding relationship between tasks
can improve software development techniques. Mayr-Dorn et
al. [20] investigated if the propagation of artifact changes

across tasks reflect work dependencies among them. They
observed that task links are useful for recommending artifacts
to monitor for changes and these links can also potentially be
used to recommend cross task dependencies. However, their
focus was on whether the same artifact is changed in two tasks,
while we investigate whether distinct artifacts are changed.

Related work with respect to horizontal traces (i.e., depen-
dencies among code and non-code artifacts) falls into two
categories: (semi)-auto-matically establishing traces [12] and
maintaining traces under system evolution. Examples include
Guo et al. [13] who apply domain specific knowledge to
generate traces between requirements and code. Ghabi and
Egyed [11] identify likely incorrect or missing traces between
requirement and code by comparing trace patterns and source
code calling relationships. Mahmoud and Niu [19] suggest
refactoring techniques to improve and re-establish traceability
between requirement documents and source code.

Examples for trace maintenance approaches include Mäder
et al. [18] who use UML model changes to trigger auto-
matic traceability maintenance rules. Jiang et al. [14] apply
incremental latent semantic indexing to automatically manage
traceability links between code and documentation. Nejati et
al. [21] demonstrate the use of natural language processing to
automatically identify the impact of requirements changes on
system design.

Approaches to supporting the management of horizontal
trace represent orthogonal approaches to our work. Combining
horizontal traces approaches with cross-task artifact mining
could potentially identify which horizontal traces require the
most coordination effort. Alternatively, our approach could
identify implicit horizontal traces that have not been explicitly
modeled.

X. CONCLUSIONS AND FUTURE WORK

We presented an approach for mining cross-task artifact
dependencies from developer interaction events. We described
a heuristic for pairing up tasks from which to mine dependen-
cies using a state-of-the-art sequential rule mining algorithm.
Detected dependencies allow the recommendation of artifacts
to be inspected for change impact analysis. We evaluated our
approach on the Mylyn data set and demonstrated that we
are able to detect dependencies over a considerable project
duration (given the available data) that also resulted in usable
recommendations to the developers. We provided correct rec-
ommendations in ∼30% of all tasks where we had matching
dependencies and ranked 50% of all artifact recommendations
within the top 5 results.

Our future work consists of two activities. On the one hand,
we will evaluate the impact of exluding read-only data and
compare the results obtained from the Mylyn data set with
other data sets that consist of commit data only. Publicly
accessible issue trackers such as Eclipse Bugzilla, Apache Jira,
and Github host various projects that provide task and commit
data. On the other hand, we will focus on evaluating other
uses of dependencies such as task dependency analysis, task
similarity analysis, or developer network analysis.

195



REFERENCES

[1] Florian Angerer, Andreas Grimmer, Herbert Prahofer, and Paul Grun-
bacher. Configuration-aware change impact analysis (t). In Proceedings
of the 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 385–395. IEEE, 2015.

[2] Fasil Bantelay, Motahareh Bahrami Zanjani, and Huzefa Kagdi. Com-
paring and combining evolutionary couplings from interactions and
commits. In Proceedings of the 20th Working Conference on Reverse
Engineering (WCRE), pages 311–320. IEEE, 2013.

[3] Kelly Blincoe, Giuseppe Valetto, and Daniela Damian. Facilitating
coordination between software developers: A study and techniques for
timely and efficient recommendations. IEEE Transactions on Software
Engineering, 41(10):969–985, 2015.

[4] Davor Cubranic, Gail C Murphy, Janice Singer, and Kellogg S Booth.
Hipikat: A project memory for software development. IEEE Transac-
tions on Software Engineering, 31(6):446–465, 2005.

[5] Kostadin Damevski, Hui Chen, David Shepherd, and Lori Pollock.
Interactive exploration of developer interaction traces using a hidden
markov model. In Proceedings of the 13th International Conference on
Mining Software Repositories, pages 126–136. ACM, 2016.

[6] Cleidson de Souza and David Redmiles. An empirical study of software
developers’ management of dependencies and changes. In Proceedings
of the ACM/IEEE 30th International Conference on Software Engineer-
ing, ICSE’08, pages 241–250. IEEE, 2008.

[7] Dario Di Nucci, Fabio Palomba, Sandro Siravo, Gabriele Bavota, Rocco
Oliveto, and Andrea De Lucia. On the role of developer’s scattered
changes in bug prediction. In Proceedings of the IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
241–250. IEEE, 2015.

[8] Mayara C Figueiredo and Cleidson RB de Souza. Wolf: Supporting
impact analysis activities in distributed software development. In
Proceedings of the 5th International Workshop on Co-operative and
Human Aspects of Software Engineering, pages 40–46. IEEE Press,
2012.

[9] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Rage Uday Kiran,
Yun Sing Koh, and Rincy Thomas. A survey of sequential pattern
mining. Data Science and Pattern Recognition, 1(1):54–77, 2017.

[10] Philippe Fournier-Viger, Roger Nkambou, and Engelbert Mephu Nguifo.
A knowledge discovery framework for learning task models from user
interactions in intelligent tutoring systems. In Mexican International
Conference on Artificial Intelligence, pages 765–778. Springer, 2008.

[11] Achraf Ghabi and Alexander Egyed. Code patterns for automatically
validating requirements-to-code traces. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 200–209. IEEE, 2012.

[12] Marek Gibiec, Adam Czauderna, and Jane Cleland-Huang. Towards
mining replacement queries for hard-to-retrieve traces. In Proceedings
of the IEEE/ACM international conference on Automated software
engineering, pages 245–254. ACM, 2010.

[13] Jin Guo, Natawut Monaikul, Cody Plepel, and Jane Cleland-Huang. To-
wards an intelligent domain-specific traceability solution. In Proceedings
of the 29th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 755–766. ACM, 2014.

[14] Hsin-Yi Jiang, Tien N Nguyen, Xiang Chen, Hojun Jaygarl, and Carl K
Chang. Incremental latent semantic indexing for automatic traceability
link evolution management. In Proceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering, pages
59–68. IEEE Computer Society, 2008.

[15] Mik Kersten and Gail C Murphy. Using task context to improve
programmer productivity. In Proceedings of the 14th ACM SIGSOFT

international symposium on Foundations of software engineering, pages
1–11. ACM, 2006.

[16] Martin Konôpka and Mária Bieliková. Software developer activity as a
source for identifying hidden source code dependencies. In Proceedings
of the International Conference on Current Trends in Theory and
Practice of Informatics, pages 449–462. Springer, 2015.

[17] Seonah Lee, Sungwon Kang, Sunghun Kim, and Matt Staats. The
impact of view histories on edit recommendations. IEEE Transactions
on Software Engineering, (1):1–1, 2015.

[18] Patrick Mader, Orlena Gotel, and Ilka Philippow. Enabling automated
traceability maintenance by recognizing development activities applied
to models. In Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering, pages 49–58. IEEE
Computer Society, 2008.

[19] Anas Mahmoud and Nan Niu. Supporting requirements to code
traceability through refactoring. Requirements Engineering, 19(3):309–
329, 2014.

[20] Christoph Mayr-Dorn and Alexander Egyed. Does the propagation of
artifact changes across tasks reflect work dependencies? In Proceedings
of the 40th International Conference on Software Engineering, ICSE’18,
pages 397–407. ACM, 2018.

[21] Shiva Nejati, Mehrdad Sabetzadeh, Chetan Arora, Lionel C Briand,
and Felix Mandoux. Automated change impact analysis between sysml
models of requirements and design. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 242–253. ACM, 2016.

[22] Sebastian Proksch, Sarah Nadi, Sven Amann, and Mira Mezini. Enrich-
ing in-ide process information with fine-grained source code history.
In Proceedings of the IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 250–260. IEEE,
2017.

[23] Thomas Rolfsnes, Leon Moonen, and David Binkley. Predicting
relevance of change recommendations. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 694–705. IEEE, 2017.

[24] David Rothlisberger, Oscar Nierstrasz, Stéphane Ducasse, Damien Pol-
let, and Romain Robbes. Supporting task-oriented navigation in ides
with configurable heatmaps. In Proceedings of the IEEE 17th Interna-
tional Conference on Program Comprehension, ICPC’09, pages 253–
257. IEEE, 2009.

[25] Neha Rungta, Suzette Person, and Joshua Branchaud. A change impact
analysis to characterize evolving program behaviors. In Proceedings
of the 28th IEEE International Conference on Software Maintenance
(ICSM), pages 109–118. IEEE, 2012.

[26] C Albert Thompson, Gail C Murphy, Marc Palyart, and Marko Gašparič.
How software developers use work breakdown relationships in issue
repositories. In Proceedings of the 13th International Conference on
Mining Software Repositories, pages 281–285. ACM, 2016.

[27] László Vidács and Martin Pinzger. Co-evolution analysis of production
and test code by learning association rules of changes. In Proceedings
of the IEEE Workshop on Machine Learning Techniques for Software
Quality Evaluation (MaLTeSQuE), pages 31–36. IEEE, 2018.

[28] Igor Scaliante Wiese, Reginaldo Ré, Igor Steinmacher, Rodrigo Takashi
Kuroda, Gustavo Ansaldi Oliva, Christoph Treude, and Marco Aurélio
Gerosa. Using contextual information to predict co-changes. Journal of
Systems and Software, 128:220–235, 2017.

[29] Annie TT Ying, Gail C Murphy, Raymond Ng, and Mark C Chu-
Carroll. Predicting source code changes by mining change history. IEEE
transactions on Software Engineering, 30(9):574–586, 2004.

[30] Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan
Diehl. Mining version histories to guide software changes. IEEE
Transactions on Software Engineering, 31(6):429–445, 2005.

196


